Direct comparison test: Suppose $\displaystyle\sum_{n=1}^\infty a_n$ and $\displaystyle\sum_{n=1}^\infty b_n$ are series with positive terms.
Limit comparison test: Suppose $\displaystyle\sum_{n=1}^\infty a_n$ and $\displaystyle\sum_{n=1}^\infty b_n$ are series with positive terms.
<aside>
Does $\displaystyle\sum_{n=1}^\infty\frac{1}{n^2-1}$ converge or diverge?
</aside>
We can use the limit comparison test to $\displaystyle\sum_{n=1}^\infty\frac{1}{n^2}$, since for large $n$, $\displaystyle\frac{1}{n^2-1} \approx \frac{1}{n^2}$.
So let’s compute $\displaystyle\lim_{n\to\infty}\frac{a_n}{b_n}$:
$$ \displaystyle\lim_{n\to\infty}\frac{a_n}{b_n} = \lim_{n\to\infty}\frac{1/(n^2-1)}{1/n^2}=\lim_{n\to\infty}\frac{n^2}{n^2-1} =\lim_{n\to\infty}\frac{1}{1-1/n^2} = 1 $$
Since $\displaystyle\sum_{n=1}^\infty\frac{1}{n^2}$ converges (since it is a $p$-series with $p > 1$), the series $\displaystyle\sum_{n=1}^\infty\frac{1}{n^2-1}$ also converges.
<aside>
Does $\displaystyle\sum_{n=1}^\infty\frac{2+(-1)^n}{n\sqrt{n}}$ converge or diverge?
</aside>
We can use the direct comparison test here with these two choices for the series:
$$
\displaystyle\sum_{n=1}^\infty a_n =\displaystyle\sum_{n=1}^\infty\frac{2+(-1)^n}{n\sqrt{n}} $$
$$
\displaystyle\sum_{n=1}^\infty b_n =\displaystyle\sum_{n=1}^\infty\frac{3}{n^{3/2}} $$
Then $\displaystyle\sum_{n=1}^\infty a_n \le \displaystyle\sum_{n=1}^\infty b_n < \infty$, so the series converges.
<aside>
Does $\displaystyle\sum_{n=1}^\infty\frac{n+2}{(n+1)^3}$ converge or diverge?
</aside>