Consider the series $\displaystyle\sum_{n=1}^\infty a_n$.
Consider the series $\displaystyle\sum_{n=1}^\infty a_n$.
<aside>
Determine if $\displaystyle\sum_{n=1}^\infty \frac{1}{2^n}$ is convergent or divergent using the ratio and root tests.
</aside>
We know that this series is convergent because it’s a geometric series with common ratio $\frac{1}{2}$, but let’s use the ratio and root tests to determine this.
Root test:
$$ \lim_{n\to\infty}\sqrt[n]{|a_n|}=\sqrt[n]{\left|\frac{1}{2^n}\right|} = \lim_{n\to\infty}\frac{1}{2} = \frac{1}{2} $$
Ratio test:
$$ \lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right| = \lim_{n\to\infty}\left|\frac{(1/2)^{n+1}}{(1/2)^n}\right| = \lim_{n\to\infty}\frac{1}{2} = \frac{1}{2} $$
<aside>
Is the series $\displaystyle\sum_{n=1}^\infty \frac{(-10)^n}{n!}$ convergent or divergent?
</aside>
We can use the ratio test here:
$$ \lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right| = \lim_{n\to\infty}\left|\frac{(-10)^{n+1}/(n+1)!}{(-10)^n/n!}\right| = \lim_{n\to\infty}\left|\frac{-10}{n+1}\right| = \lim_{n\to\infty}\frac{10}{n+1} = 0 < 1 $$